International Journal of Theoretical Physics, Vol. 43, No. 3, March 2004 (© 2004)

Decay of de Sitter Vacua by Thermal Activation

Jaume Garriga'?* and Ariel Megevand!»

Decay of a de Sitter vacuum may proceed through a “static” instanton, representing pair
creation of critical bubbles separated by a distance comparable to the Hubble radius—a
process somewhat analogous to thermal activation in flat space. We compare this with
related processes recently discussed in the literature.
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1. INTRODUCTION

In field theory, a metastable false vacuum may decay either by tunneling or
by thermal activation. Tunneling is described by a solution of the Euclidean field
equations symmetric under spacetime rotations (Coleman, 1977). In flat space and
at zero temperature this is the instanton with the least action, and hence represents
the dominant contribution to the decay rate (Coleman et al., 1978). At sufficiently
high temperature, thermal activation is more probable than tunneling, and the rate
is dominated by a static solution which represents a spherical critical bubble in
unstable equilibrium between expansion and collapse (Linde, 1983). The symmetry
of this solution is O(3) x U(1), where the U(1) factor corresponds to translations
along the compactified Euclidean time direction.

As shown by Coleman and De Luccia (1980; Brown and Teitelboim, 1987,
1988), gravity can be easily incorporated into the description of tunneling. When
the initial state is a false vacuum with a positive energy density, the initial geometry
corresponds to a de Sitter-like exponential expansion. A bubble which materializes
through quantum tunneling has zero energy, and consequently (in the thin wall
limit) the geometry outside of the bubble remains unaffected by the nucleation
event. After nucleation, the bubble walls accelerate outward, and the volume of
the new phase increases at the expense of the old one. However, because of the
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presence of event horizons in de Sitter, the growth of a single bubble cannot engulf
the whole space. If the nucleation rate per unit volume I' is large compared to
H*, where H is the inverse de Sitter radius, the foam of nucleated bubbles will
percolate and the phase transition will complete. But if I' <« H*, the rate at which
bubbles nucleate and grow does not catch up with the exponential expansion of
the false vacuum. In this case, the volume of the false vacuum keeps increasing
with time and the transition never fully completes in the whole spacetime (leading
to eternal old inflation). However, any observer will experience a local transition
to the new vacuum phase in a finite proper time.

On the other hand, the description of thermal activation can be more involved
when the self-gravity of the bubbles and of the thermal bath is considered. In the
cosmological context, the thermal bath drives the expansion of the universe, and the
temperature becomes time dependent. Because of that, exact instantons cannot be
constructed. In low energy cosmological phase transitions (e.g. at the electroweak
scale) it is safe to ignore the self-gravity of the bubbles, and to use the flat spacetime
results for the nuncleation rate* . If this rate is sufficiently large, the phase transition
completes as the bubbles percolate, typically after a short period of supercooling
and subsequent release of latent heat by the nucleated bubbles (Megevand, 2003).
But if the rate is too small, there is a strong supercooling and the thermal bath
dilutes away; the false vacuum starts dominating before the phase transition is
complete, and we are back to the situation described at the end of the previous
paragraph (Guth and Weinberg, 1981, 1983).

Note, however, that even when all matter has been diluted away, the false
vacuum dominated de Sitter expansion can be considered to have a nonvanishing
temperature (Gibbons and Hawking, 1977) T = H /2w, which does not dilute-
further as the universe expands. One may then ask whether this leads to thermal
activation, and if so, at what rate does it proceed. In what follows, we shall discuss
the corresponding instanton, describing the nucleation of a pair of critical bubbles
in unstable equilibrium between expansion and collapse. It shoiuld be noted that
the theorem in Coleman et al. (1978) does not necessarily apply to de Sitter space,
and hence it is not clear a priori whether this new instanton has higher action than
the usual Coleman—De Luccia one.

Static self-gravitating instantons with O(3) symmetry have previously been
considered in a variety of contexts, notably for the description of false vacuum
decay in the presence of a black hole (See e.g. (Berezin et al., 1991; Blau et al.,
1989; Farhi et al., 1990; Farhi and Guth, 1987; Kodama et al., 1981, 1982; Samuel
and Hiscock, 1991; Sato et al., 1981, 1982) and references therein). The particular
solution we shall consider here corresponds to pair creation of critical bubbles in de
Sitter, and to our knowledge it does not seem to have received much attention in the

4The effects of self-gravity, however, may be important at high energy scales (see e.g. Donoghue,
2003) for a recent discussion.
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past. The following is an extended version of the discussion given by the present
authors in Garriga and Megevand (2003, in press). In Section 2, we describe the
solution. In Section 3, we discuss the action and the nucleation rate. In Section 4,
we consider the limit in which the mass of the nucleated bubbles is small. Section 5
is devoted to the opposite limit, when the gravity of the bubbles is very important.
In Section 6, we compare the action for thermal activation with the action for
tunneling (through the Coleman—De Luccia instantion). Section 7 compares the
process of thermal activation of seeds of the new phase with a related process
recently discussed by Gomberoff e al. (2003), by which most of space would
jump to the new phase except for a pair of bubbles which contain the “remnant”
of the old phase. Section 8 is devoted to conclusions.

2. PAIR CREATION OF CRITICAL BUBBLES

Unlike the case of the Coleman—De Luccia bubble, the energy of a critical
bubble is different from zero, and consequently, the metric outside of it is no longer
pure de Sitter but Schwarzschild—de Sitter (SdS). The instanton is a solution of the
Euclidean equations of motion, with two metrics glued together at the locus of the
wall, which is a surface of constant r in the static chart of SdS (see Fig. 1). For
simplicity, we shall restrict attention to the case where the vacuum energy density
is positive in both the initial and the final states. Also, we shall assume that the
thin wall approximation is valid (Coleman, 1977).

T % T+
2 R -
1 t
: =Tty =
: =y
< 1 R
. R

Fig. 1. Static instanton in de Sitter space. The left figure shows the geometry induced on
the plane r, 7, while keeping angular coordinates fixed, whereas the right figure shows the
geometry induced on the plane r, ¢, keeping 6, and ¢ fixed. The vertical direction corresponds
to the coordinate r, common to both pictures. The cosmological horizon is atr = r, the buble
wall is at r = R, and r = 0 is the center of the static bubble of the new phase. The geometry
at the time of nucleation is obtained by cutting the instanton by a smooth space-like surface
orthogonal to the time-like killing vector. This corresponds to a diametral section of the figure
on the left, which therefore contains two bubbles, whose centers are separated by a distance
comparable to the Hubble radius.
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2.1. The Instanton

The metric outside is given by

ds* = fy(rydt* + f;\(r)ydr? +r2dQ?, 1)
where dQ2? = d6? + sin® 0d¢$>, and
ﬁm=o—¥ﬂ—%ﬂ. )
The metric inside is given by
ds* = C*fi(rydt* + 7' (r)dr* +r*d?, 3)
where
fir) = (1 — HZr?). @

Here G is Newton’s constant. The parameter C is determined by the condition
that on the bubble wall (i.e., at » = R) the two metrics must agree, which leads to

C = [fo(R)/fi(R)]'V2.

The parameters M and R depend on the wall tension o, and the Hubble
parameters outside and inside the bubble, H, and H; respectively. Their values are
determined by the junction conditions at the buttle wall (Israel, 1966),

[Kap] = =47 GO Yap, &)

where [K ] is the difference in the extrinsic curvature K, = (1/2) f 1723, 8ap ON
the two sides and y,; in the world-sheet metric. Equation (5) gives rise to the
Jjunction conditions,

[g]l = 4nGo, [¢'1=0, (6)
where we have introduced the new function g(r) = f'/?(r)/r. Using Egs. (2)
and (4), we have
, 1 3GM , 1
gogo=r—3+r—4, 8igi =~ 3 @)
From (6), we have g/ (R) = g{(R) = —3M /470 R*, and then gi(R) and g,(R) are
easily obtained from Egs. (7):

dro R
3M

gi(R) = ®)

3GM
z )

» &(R) =gi(R) <1 -
From (2) and (4) we have
1 2GM

1
GR) = o5 — 5= —HY, gI(R) = o5 — HY. ©)
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Inserting (8) in (9) we finally obtain a quadratic equation for g;(R) = x. The
solution is
172
€ + 30 + € + 30 + Hi2 (10)
X = — —_— —_— _— -— s
40 16M§ 40 16M§ 2

where we have introduced the parameter € representing the difference in vac-
uum energy difference on both sides of the bubble wall: H?> — H? = 87Ge/3 =
€/ 3M§. Then the parameters M and R are given in terms of x by

R™>=x>+H?, M=4noR/3x. (11)

This concludes the construction of the instanton solution for given values of the
physical parameters o, H,, and H;

2.2. Cosmological Horizon

The above equations are valid only as long as 3GM < R [otherwise (8) would
yield g; < 0, which is meaningless]. Thus, from (11), we require 47 Go < x, or
o < oy, where

oy =4M;(3H; — HY). (12)
(The case witho > oy will be discussed in Section 5.) The mass parameter satisfies
M < My = M(ox) = 3vV3GH,) ™. (13)

For M < My, the equation f,(r) = 0 has three real solutions. One of them, say
r_, is negative and the other two are positive. The two positive roots correspond
to the black hole and cosmological horizons. We call them respectively s and 7.
Therefore we can write

H2
for) = T"(r —r ) —r)r —ry). (14)

In the present case, with ¢ < oy, the horizon at r, is not present, since the exterior
metric is matched to an interior metric at some r = R > r, (see Fig. 1). Forr < R
the metric is just a ball of de Sitter in the static chart, and it is regular down to the
center of symmetry at » = 0. In general, the size of the cosmological horizon is
given by

2H!
rp = —2— cos <<p~|—n>’ (15)
V3 3
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where we have introduced the angle

/ 1
@ = —arc tan m — 1, (16)

In the limit M — O the angle ¢ — —m/2, and Hyry — 1.

According to Eq. (8), on the bubble wall we have f,(r) = x*(R — 3G M)?,
so the equation f,(R) = 0 has a double zero instead of two different roots. This
means that the radius of the instanton will coincide with the radius of one of the
horizons only in the special case where both horizons have the same size, ry =
ry = R =3GM. As we shall see in Section 5, this limit corresponds to o = oy,
for which the exterior metric is the Nariai solution (Ginsparg and Perry, 1983;
Nariai, 1951), with mass parameter My given in (13) and with Hyry — 1/ V3.
There, we shall also comment on the case ¢ > oy, which is not covered by the
present discussion.

2.3. Euclidean Periodicity

Regularity of the Euclidean solution will determine the periodicity of the
Euclidean time coordinate (and the thermal properties of the solution). Forr — r,
we have

folr) =~ A2 (1 - i) , (17)
I+
where
A*=HXry —ro)(rp —ry) =3Horl — 1. (18)
In terms of the new coordinates
2ry r A?
P=E —Z’ ¢=ih (19)
the metric (1) for r — r, reads
ds* = p*d¢* + dp* +ri1dQ’. (20)

so it is clear that ¢ is an angle, 0 < ¢ < 2w, and ¢ varies in the range 0 <t <
4mr, /A%, Thus, the periodicity of the time coordinate is given by

4mry 2 ri

P=3m o1 m oM

21

It is also of some interest to determine the physical temperature on the bubble
wall world-sheet, given by the proper time periodicity S = foﬂ -/ 2(R)dt =
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fo2(R)B = CF (BB,

Br = 2nxri:i_%. (22)
If there are field degrees of freedom living on this world-sheet, this will be
the temperature that they will experience (rather than the ambient de Sitter
temperatures).

Like in the case of instantons describing the production of black holes
(Ginsparg and Perry, 1983) or monopoles (Basu et al., 1991) in de Sitter, the
instanton presented here describes the creation of pairs of bubbles. As we have
just seen, the Euclidean time runs on a circle S! (see Fig. 1). The geometry at the
time of nucleation is obtained by slicing the compact instanton through a smoother
space-like surface which cuts the S' factor at two places, say, t = 0 and t = /2.
The resulting geometry contains two different bubbles separated by a distance
comparable to the inverse expansion rate.

3. INSTANTON ACTION

The nucleation rate is determined by the Euclidean action, which turns out to
have a rather simple expression in terms of r. The action is given by

R
Sg = o/d3gﬁ+/d4x¢§ <pv — @)' (23)

By the equations of motion, the scalar curvature is given by

Rg =327Gpv/g + 247Go / e Jy8P(x — x(8)), (24)

and hence the on shell action is given by
o

Sg = 5 [d3$ﬁ—[d4xpv\/§. (25)

The first integral in (25) is just the volume of a two-sphere of radius R times fg.
The second integral in (25) splits into the contributions from the two different
vacua,

R Iy
0i / Cdt dramr® + p, / dtdramr? (26)
o R

= pC 4 R? 46 R? 27
= i ﬂgn +poﬂ§n(r+— ) (27)
So the instanton action is
H? f,"*(R)

Sg = —2nR*0 f)/*(R)B — R* L =

2
B— @ — R%iﬁ. (28)
+ 2G
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After some algebtra Sg can be written in the simple form

wr? A(ry)
Sp=——t -t 29
E G 4G 29

where A(r,) is the area of the horizon at ;. The exponent B which gives the
probability for brane nucleation is the difference in actions between instanton and
background. The action of the background is just Sg = —7/ G H?2, so the difference
in actions between the instanton and the background is given by

_ T
- GH?

This expression could have been anticipated from general arguments. The action of
a static Euclidean solution with periodicity 8 is given by Banados et al. (1994) and
Hawking and Horowitz (1996) Sg = BE — S, where E is the fotal energy and S
is the entropy. For a closed solution, without a boundary, the total energy vanishes
E = 0. Hence the Euclidean action is equal to the entrophy of the solution, which
is just one fourth of the sum of the areas of all horizons. Hence, Eq. (30) can be
rewritten as B = —AS, and the transition probability to

I' ~ exp(AS). (31)

(1—riH). (30)

As both the initial and the final solutions can be said to represent macroscopic
states in thermal equilibirum, their entropy can be interpreted as the logarithm
of the corresponding number of microstates in the microcanonical ensemble with
E = 0. The transition probability is then simply proportional to the relative number
of microstates.

4. WEAK SELF-GRAVITY LIMIT

If the bubbles are sufficiently light, GMH, < 1, and provided that o < o,
Eq. (16) gives Hyry =~ 1 — GMH,, and from (30) we have

B~ B,M, (32)

where 8, = 27/ H,. Since the mass of the bubble is small, its appearance does not
significantly change the temperature of the horizon. In such case, the nucleation
rate of the bubbles may be interpreted from the point of view of the observer at
r = 0 as being due to a thermal bath at the fixed Gibbons—Hawking temperature
By ! The corresponding probability is proportional to the Boltzman factor

e M, (33)

Equation (32) can also be understood as follows. The energy of the bubble has
been extracted from thermal reservoir. According to the first law, the entropy of
the reservoir must decrease by d Shorizon = —Bo dM (Teitelboim, 2002). From the
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discussion at the end of the last section, B = —(AS)horizon, and hence for bubbles
of small mass we obtain (32).

Let us now consider a few specific limiting cases, starting with the case of low
tension branes, o/ Mg <« H,, H, — Hj, with H, > H;. In this case the parameter

x is large compared with H,, R =~ x~ 1, and we have
M = 1603 /3€>.

This is just the flat space expression for the energy of a critical bubble. The corre-
sponding bounce action is B & 327203 /3 H,e?, which coincides with the thermal
activation rate in flat space at the temperature g, '

At finite temperature, jumps to a vacuum with a higher energy density are also
possible. In the absence of gravity, these jumps are frustrated because the bubbles
of the new phase tend to recollapse. When gravity is included, the expansion of the
universe can keep these “false vacuum” bubbles from contracting (this is true also
for the case of tunneling bubbles Garriga, 1994a,b; Garriga and Vilenkin, 1998;
Lee and Weinberg, 1987). Hence, let us consider again the case of low tension
branes, O’/Mg < |H, — H;| < Hj, but now with H, < H;. In this case we find

x ~ —oH?/e < H;, and

. 1 (Hio\? _1
R~ H,; 1—5 ~HT.
€

In this limit, the bubble of the false vacuum phase is almost as big as the cosmo-
logical horizon. We also have M ~ —(47'[/3)5Hi_3 and B ~ —8r%e/3H?, where
we have used that H; — H, <« H; to replace H; by H, in the last expression (note
that € < 0 in the case we are considering here, so M and B are both positive). This
approximately coincides with the bounce action for the homogeneous Hawking—
Moss instanton (Hawking and Moss, 1983), representing the upward jump of a
horizon sized region of de Sitter space into a higher false vacuum.

Finally, we may consider the case of intermediate tension |H, — H;| < o/
Mg < H,, H;. Thisleadsto x ~ Hj/ﬁ, and R? ~ 2/3H12. In this case, the differ-
ence in pressure between inside and outside of the brane is insignificant compared
with the brane tension term, which is balanced against collapse by the cosmolog-
ical expansion. The energy of the critical bubble is E.(R) <« 4mo R?. Note, from
(22), that the inverse temperature

27
V3H,

is different from the one experienced by a geodesic observer at the origin of
coordinates = 0. This is because observers at » # 0 are in fact accelerating.
From the point of view of the observer at » = 0, the energy of the bubble is M =

01/ 2(R)EC(R), because of the gravitational potential contribution. Hence, taking

Br ~ (34)
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into account that Bp = fol/ 2(R),BO the exponent in the Boltzmann suppression
factor can be written as B &~ oM ~ frE., and we have B ~ 167120/3\/§H03.

5. STRONG GRAVITY LIMIT

For given H, and H;, the solution of Section 2 only exists provided that the
tension of the bubble wall does not exceed a certain bound oy, given in Eq. (12).
Let us now consider what happens near this bound, and beyond.

5.1. The Nariai Limit

As we mentioned in the discussion below Eq. (14), the exterior metric in the
limit 0 — oy corresponds to the Nariai solution, with ry = ry = (\/§HO)’1, and
M = 1/3+/3H,G. Replacing this value in (30) we find readily

27
~ 3GH?

35)

This may be compared with the action of the instanton describing the nucleation
of black holes in the same de Sitter universe (Ginsparg and Perry, 1983),

N T
"~ 3GH?Y

The difference B — By = m/3GH?2 = Ap, /4G, is just the area of the black hole
horizon in the Nariai solution, as expected from the general discussion of the
previous section (Here, we are of course neglecting the entropy stored in the field
degrees of freedom living on the bubble walls, which would show up when the
determinantal prefactor in the nucleation rate is evaluated).

The fact that ¢ = r does not mean that both horizons coincide, since the
coordinates r,  become inadequate in this case (Ginsparg and Perry, 1983). Near
the Nariai limit the metric outside takes the form (1), with

2
£y~ A? (1 _ L) _ (1 - L) , 37)
ry ry

and r ~ r, plus higher orders in the parameter A, which we defined in (18). In the
present limit this parameter tends to zero, A2 = «/3Hy(r, — r,). Now we define
new coordinates ¢ and A by

p=1-2(1-" .y (38)
cosy=1——(1—-——), = —1,
A2 V+ 2

Bx (36)

so that the metric becomes

ds® = sin® Y dA* + r2 dy* +r2 dQ. 39)
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The cosmological horizon is at ¢ = 0 and the black hole horizon is at ¥ = 7.
Now in the limit A — 0 we just replace r, = (v/3H,) ™.

We must determine the position 1 of the bubble wall, which is given as
before by the matching conditions (5), where now the metric outside is (39). So,
on the wall, we have

ds2 = sin® Yig dA* + 13 dQ2? (40)
= £fi(R)dt? + R*dQ*. 41)

The extrinsic curvature on the outside is —(1/2)dy gap, With goo = sin’ Y and
gaa = ri, i.e., Koo = —(1/r4)goo cot ¥, Koo = 0. The curvature inside is as be-
fore Koo = good:f,"/> and Kqg = gaaf,’*/r, with fi(r) = (1 — H2r?), so the
Israel conditions give

1 1

— ot g — (fim) r = —4nGo, 42)
I+
f*(R)/R = 4nGo. (43)
These equations are easily solved and give
3H2 — H2\'?

sinyp = —>—35) 44
YR <6H02—Hi2) (44)

o =on = 2Mp,/3H2 — H}? (45)

so H; must be less than v/3 H,. Now regularity at the cosmological horizon ¥ ~ 0
implies that 0 < A /r, < 2w, so B = sin(Yg)2nwr,. Hence,

(46)

PR <3H02 - Hﬁ)‘/z

- \/§Ho 61—102 - I—Ii2

Thus, also in this case, the effective temperature of the field degrees of freedom
living on the world-sheet will be of order Hy. (The only exception occurs if there
is some fine adjustment between Hy and H; which makes the factor inside the
brackets very small, in which case the temperature may be much larger.)

5.2. Beyond the Nariai Limit

For 0 > oy we have 3GM > R and the construction of Section 2 does not
apply [since by Eq. (8), gi would be negative]. As pointed out in Gomberoff et al.
(2003), above this threshold a static solution can still be constructed by gluing
the interior solution (3) to the ry < 7 < R portion of the exterior SdS solution (1)
(rather than using the R < r < r4 portion). This changes the sign of K, in the
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exterior, and the junction conditions become
(g} =4nGo, (g} =0, (47)

where the curly brackets denote twice the average value on both sides of the bubble
wall. Equation (8) is then replaced by

4no R 3GM
gi(R) = YA 8o(R) = gi(R) (T - 1>, (48)
but Eqgs. (10) through (11) remain the same. The instanton would still look pretty
much as in Fig. 1, but with the cosmological Horizon of radius r replaced by
a black hole horizon of radius ry¢ < R. Hence, in the right pannel of Fig. 1, the
horizontal maximal circles would grow from O to R as we move up from the
center of the bubble, but then the circles would start decreasing from R to r as we
continue from the bubble wall to the horizon.
It is straightforward to calculate the Euclidean action for this solution, which
is given by
A(rs)
Sg = G (49)

where A(rg) = 4711'82 is the area of the black hole horizon, with

2H! ((p—n)
F¢ = ——— COS ,
V3 3

and where ¢ is given by (16). The corresponding bounce action

B=—(1-r2H?), 50
AN (50)
is perfectly finite, since the instantons involved are both compact and regular.
Moreover, B > 0, as it should be if this is to be interpreted as a process with an
exponentially suppressed rate.

Is this instanton suitable for describing vacuum decay in the usual sense? Let
us assume that we are in a false vacuum phase, and for simplicity, that the false
vacuum decay rate per unit volume is exceedingly small compared with H*. Then
we expect that after some time the metric will take the form

ds? = —dP? + 2™ (dx)?, (51)

over an exponentially large portion of space (with the exception of small portions
of volume carved out by bubbles of the new phase which may have nucleated). In
the solution described in Section 2 an asymptotic region with metric (51) can be
found (upon analytic continuation) in the region beyond the cosmological horizon,
which is asymptotically de Sitter and infinite in volume in a flat slicing. In the case
we are considering in this subsection, however, the global structure of the solution
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Ts

8 R Fig.2. Thet = const. surface has the geometry of an Einstein—
Rosen bridge of the old phase which connects a pair of bubbles
of the new phase.

is rather different. A black hole singularity is hidden beyond r, and the static
solution does not contain any asymptotic region that looks like (51).

The ¢ = const, surface has the geometry of an Einstein—Rosen bridge of the
old phase which connects a pair of bubbles of the new phase (see Fig. 2). Each
one of these bubbles is in unstable equilibrium, it can either expand or contract.
Let us concentrate in one of them. If the bubble wall expands, then its motion is
perceived as expansion from both sides of the wall (recall that in the present case the
radius r decreases as we move away from the wall in both directions). Conversely,
contraction of the bubble wall would be perceived as contraction from both sides of
the bubble wall. If one of the bubbles expands, it eventually generates an infinitely
large region of the false vacuum phase surounding the black hole, and the metric in
the false vacuum region far away from the black hole has the asymptotic form (51).

This suggests the following interpretation for the static instanton beyond the
Nariai limit: it describes the thermal production of black holes of mass M [given
by (11)] in an asymptotically de Sitter region. Initially, the throat of the black
hole connects with a compact baby universe, but this pinches off as the black hole
singularity develops (Blau et al., 1987; Farhi et al., 1990; Farhi and Guth, 1987;
Kodama et al., 1981, 1982; Sato et al., 1981, 1982). The baby universe contains a
bubble of the new phase in unstable equilibrium (see Fig. 3). If the bubble of the
new phase collapses, the baby universe disappears into nothing. On the contrary,
if the unstable bubble expands, it ends up generating an infinite region of the new
vacuum phase, separated from an infinite region of the old vacuum phase by a
domain wall in constant acceleration. At the center of the region of the old vacuum
phase, there is also a black hole of mass M.

Let us now comment on the nucleation rate. According to Eq. (50), this is
given by

T~ e+Sbh—A(HJ')/4G ~ g PoM+Smm ,—AG1)/4G (GMH, < 1). (52)

Here, Sy, is the black hole entropy. In the last step, we have used that for black holes
of sufficiently low mass, the entropy of the cosmological horizon is smaller than
the entropy of the original de Sitter metric by the amount (A S)horizon = —BoM, as
discussed in Section 4.
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~/

Fig. 3. A baby universe whith a bubble of the new phase, pinching off a large
universe filled with the old phase.

When we compare the previous result with Eq. (33), the last factor in Eq. (52)
strikes us as rather unexpected. It seems to say that of all attempts at forming a
black hole of mass M in a region with effective de Sitter temperature §,, only a
very small fraction given by exp[—A(r)/4G] succeed in forming a baby universe
which hosts a bubble of the new vacuum phase. Perhaps this is not unreasonable,
since a baby universe which is entirely filled with the old vacuum phase would
have an entropy which is higher by the amount +A(r.) /4G, relative to the entropy
of the baby universe containing the static bubble. This suggests that most attempts
should produce a baby universe of the old phase, without a bubble of the new
phase. However, we should also keep in mind that the instanton representing this
alledgedly more frequent process does not exist (the solution would contain two
horizons at different temperatures, and hence the Euclidean section would have a
conical singularity at one of them).

Mathematically, the factor exp[— A(r1)/4G] arises because the instanton rep-
resented in Fig. 2 does not contain the cosmological horizon at 7. The neighbor-
hood of this horizon lias been excised and replaced with the bubble of the new
vacuum phase. This could mean that the interpretation given above for the instan-
ton beyond the Nariai limit is not correct. In this interpretation, we are assuming
the existence of an initial region, of size larger than the cosmological horizon,
where the metric takes the approximate form (51). A cosmological horizon, and
an asymptotic de Sitter region of the form (51), does develop if we let one of the
unstable bubbles expand, but strictly speaking it is not present in the analytic con-
tinuation of the instanton. Clearly, the legitimacy of this interpretation deserves
further investigation.

6. COMPARISON WITH THE COLEMAN-DE LUCCIA ACTION

Let us now compare the action of the thermal instanton with that of the
tunneling process described by the Coleman—De Luccia (CDL) instanton. The
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latter is given by (see e.g. Feng et al., 2001)

1 1
_ 204 .

BepL = 127 Mp |:A—0(1 — bay) — E(l — bal)} , (53)

where
€ o (54)

ol = 30 + 4M§’
and
1

h= — (55)

v H12 +0‘12

The o's are related by H? + o? = H2 + 2. Using thisrelationand H? = A/3M?2,
Bcpr can be written as

B = My o< <\/f127—|—2 ) (56)
CDL = 7 - i T a ).
H() 2 /HiZ + a12 2M§ 3M§

The values of B for the static instanton and Bcpr easily compared by noticing
that both are of the form 77 /GH?, times a function of the dimensionless parameters
s = 0/2M§H0 and & = H;/H,. In Fig. 4 we plot the action for the CDL case,
and in Fig. 5 we plot the difference between the two actions. Note that the static
instanton action is larger than the CDL action in the whole range of parameters.

As we mentioned in Section 4, jumps to a vacuum with higher energy density
are also allowed (Garriga, 1994a,b; Garriga and Vilenkin, 1998; Lee and Weinberg,
1987). Note that for the case of upward jumps, 4% > 1, the actions become com-
parable, and in fact they are equal at the corner where 0 — oy — 0 and 7% — 3
(see Figs. 5 and 6).

Fig. 4. The bounce action for the Coleman—De
Luccia instantons. Here b = HOZBCDL/SJTZM;,
s = a/ZMSH(, and i = H;/H,. The action is finite
also for upward jumps, which correspond to 4 > 1.
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SNSE
SR

Fig. 5. The difference between the actions of the
static and the Coleman—De Luccia instantons. Here
Ab=H2(B — BCDL)/SnZMg, s = a/zMgHo and
h = H;/H,. The black line on the surface indicates
the value on for each value of H;/H,. Note that
Ab > 0 in the whole range and therefore the ther-
mal activation process is always subdominant with
respect to the Coleman—De Luccia tunneling process.

7. SEEDS OF THE NEW PHASE VS. REMNANTS OF THE OLD PHASE

In the interpretation which we have adopted so far, the static instanton rep-
resents the creation of pairs of critical bubbles of the new phase embedded in the

3

Fig. 6. The ratior = Bcpr/B between the actions of the Coleman—De
Luccia and static instantons. As in Fig. 5, the black line on the surface
indicates the value of on. The two actions are comparable for h? >1,
become equal only at the corner where 0 — oy — 0 and 72 — 3.
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false vacuum phase (Garriga and Megevand, 2003, in press). We may refer to this
as the process of “pair creation of seeds” of the new phase. This process is analo-
gous to pair creation of particles (or even topological defects such as monopoles
(Basu et al., 1991)) by the expanding de Sitter background. As we showed in
Section 4, when the nucleated objects are sufficiently light, the creation rate is
simply proportional to the Boltzmann factor.

Gomberoff et al. (2003) suggested a rather different interpretation of the same
solution. The process they considered involves a spherical bubble wall coming in
from the cosmological horizon, sweeping away the false vacuum as it moves
towards smaller radii, and replacing it with the true vacuum. The result of this
process would also be a critical bubble in unstable equilibrium between expan-
sion and collapse, but this time the bubble would be a “remnant” of the old phase
rather than the seed of the new phase. We shall thus refer to this process as “cre-
ation of remnants™ . Even if mathematically the Euclidean solution is the same
as before, the interpretation and background subtractions are very different. As a
consequence, the nucleation rate of such objects does not have the same simple
Boltzmann suppression form as we found in (33) for light bubbles.

Suppose for definiteness a potential with two nondegenerate vacua, labeled
by 1 and 2, with V(1) > V(2) > 0. The solution representing a downward jump
which leaves a remnant of vacuum 1 surrounded by vacuum 2 is the same as
the instanton for an upward jump caused by a seed of vacuum 1 which has been
activated from vacuum 2. Similarly, the upward jump which leaves a remnant of
vacuum 2 surrounded by vacuum 1 is related to downward jumps by activation of
a seed of vacuum 2 from vacuum 1. Hence

SéR = Sgs’ SéR = Sés- (57)

Here, the subindex CR stands for “creation of remnants,” and Scr denotes the action
for the cosmological thermalon discussed by Gomberoff et al., while the subindex
CS refers to “creation of seeds,” and Scs denotes the action given in (29). The
arrows indicate whether we are considering an upward jump or a downward jump.

The bounce action is obtained by performing the relevant background sub-
tractions

BéR = Sgs — S, BgR = Sés = S(2). (58)

Here S(1) and S(2) are the background actions, given by Eq. (29), with r replaced
by the corresponding de Sitter radii H,” and Hz_1 respectively. Before proceeding,
we should stress that since the instantons we are considering are static and com-
pact, then according to the discussion in Section 3 the bounce actions are always

3 Gomberoff ez al. used the term “cosmological thermalon™ for the process of creation of remnants.
“Thermalon” may indeed be a better word than “instation” for describing the static Euclidean solutions.
However, this denomination seems equally appropriate for the process of creation of seeds, so to avoid
confusion we shall simply refer to creation of seeds or remnants.
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given by®
Bi=—AA/AG = —AS (59)
where AA is the change in the area of the horizon and AS is the change in the
entropy.
It is clear from (58) that
Bly — Bl = Bs — Bl > 0, (60)
By — Bl = Bls — Bl > 0. (61)

Here, we have used the fact that BgDL +5Q2) = BéDL + 8(1), since the CDL
instanton solution is the same for upward and for downward jumps, and all that
changes is the background subtraction [21]. The inequalities above come from
the fact that Bcg is always larger than Bcpy, as shown in the previous section. It
follows that Bcr is also always larger than Bcpy, and so the creation of remnants
is also subdominant with respect to the tunneling process represented by the CDL
instanton.

Finally, we may ask which of the two processes is more important, the creation
of seeds or the creation of remnants. From (57) we have

BéR - Bgs = Bés - BéR' (62)

Hence, if one of the channels is dominant for upward jumps, then it means that
the other process is dominant for downward jumps. Figure 7 shows the ratio
7 = Bcs/Bcr. Note that if & < 1, corresponding to downward jumps, then the
process of pair creation of seeds is much more likely than the process of pair
creation of remnants. On the other hand, for 2 > 1, corresponding to upward
jumps, the ratio of the bounce actions is very close to one [although, from (62), the
frequency of upward jumps through creation of remnants outweighs that of upward
jumps through creation of seeds by the same factor as downward jumps through
creation of seeds outweight downward jumps through creation of remnants. ]

6 In fact, Gomberoff et al. (2003) considered a slightly different setting, where a membrane is coupled to
a three form gauge field A3 and to gravity. The term which represents the interaction of the membrane
with the gauge field takes the form g [ A3, where g is the membrane charge, and the integral is over
the membrane world-sheet. It was argued in Gomberoff ez al. (2003) that A3 is discontinuous accross
the membrane, and a somewhat heuristic prescription was given to compute the contributionof ¢ [ A3
to the action and to perform the background subtraction. The result of this procedure, however, differs
from Eq. (59). Here, we shall not try to elucidate the reason for this discrepancy. We note, however,
that the on-shell Euclidean action for the system of a membrane coupled to A3 and to gravity, and
with proper inclusion of boundary terms (Brown and Teitelboim, 1988) can be shown to be the same
as the action we have taken as our starting point (25) with p, replaced by F2/2, where F = d A3 is
the field strength [see e.g. Eq. (6.1) in (Brown and Teitelboim, 1988). Hence, the results of the present
paper, which are in principle valid for the case of vacuum decay in field theory, may as well be valid
for the case of the brane coupled to the antisymmetric tensor field.
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Fig. 7. The ratio 7 = Bcs/Bcr between the bounce actions for the same
transition between some initial vaccum and some final vacuum, where
h = Hfinal/ Horiginal» Bcs corresponds to the creation of a seed of the final
vacuum and Bcg corresponds to the process which leaves a remnant of
the orignal vacuum. The right and left boundary curves correspond to the
Nariai limit for the creation of seeds and remants respectively, s = sy
and §x [see Eqgs. (63) and (64)].

Finally, let us recall that the Nariai limit corresponds to on = 2M§(3H02 —
Hiz)l/ 2 [see Eq. (12)]. Here the indices “i” and “0” stand for the inside and the
outside of the bubble. For pair creation of seeds, outside and inside correspond
to the original vacuum and the final vacuum respectively H, = Horigina and H; =
Hjina- In the dimensionless variables s = o/ (ZMg Horigina) and h = Hna/ Horiginal»
the Nariai curve corresponds to

s& =3 —h’ (63)

For pair creation of remnants with the same initial and final states as the seeds, we
have H, = Hjna and H; = Hyiginal, and the Nariai limit corresponds to

5% =3h — 1. (64)

The Nariai curves s = sy and s = 3, corresponding to the circle (63) and the
hyperbola (64) are also plotted in Fig. 7.

8. SUMMARY AND CONCLUSIONS

de Sitter vacua are believed to be metastable at best (see e.g. Susskind (2003)
for a recent discussion). It is well known that vacuum transitions from a metastable
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vacuum can proceed through quantum tunneling, which in the thin wall approxi-
mation is described by the Coleman—De Luccia instanton. This process can take
us to lower energy vacua, but also to other de Sitter vacua with a higher vacuum
energy density (Garriga, 1994a,b; Garriga and Vilenkin, 1998; Lee and Weinberg,
1987).

Here, we have investigated an alternative process, by which critical bub-
bles of the new phase can be pair produced. This process is the analog of ther-
mal activation in flat space.The mass M of the “seeds” of the new phase is
given by Eqgs. (10) and (11), in terms of the initial and final vacuum energies,
Po = 3M§H§ and p; = 3M§H12, and of the tension o of the wall separting both
phases.

For 02 < 4M3 (3H2 — H?), the geometry of the critical bubbles is the fol-
lowing (see Fig. 1). Outside the bubble, the metric is Schwarzschild—de Sitter, and
has a cosmological horizon. The black hole horizon is not present, since we are
matching to an interior solution at some R > rg, where R is the bubble radius and
rs 1s the radius of the would be black hole horizon. Inside the bubble, the metric is
pure de Sitter with curvature radius Hi_l. For GM H, < 1. the nucleation rate is
proportional to the Boltzmann factor

[~ e PoM, (65)
as would be expected from simple thermodynamical arguments. Here 8, = 2n/H,
is the inverse de Sitter temperature of the old vacuum phase.

Foro? = 4M g (3H 02 — Hiz) the metric outside of the bubble corresponds to the
Nariai limit of the Schwarzschild—de Sitter solution, for which the black hole and
cosmological horizons have the same size. Beyond the Nariai limit, i.e. for 6> >
4M§ (3H02 — Hiz), the asymptotic form of the solution changes quite drastically
(Gomberoff et al., 2003). The static solution with a pair of critical bubbles has a
black hole horizon instead of a cosmological horizon. The interpretation of such
solution is less clear than in the case o2 < 4Ml‘)1 (3H02 — Hiz), but we have argued
that it may correspond to the creation of a baby universe containing a bubble of
the new phase. The nucleation rate is formally given by (52), and does not have
the simple form (65) even in the case when the mass M is small (here, M is the
mass of the black hole connecting the asymptotic region of the old phase with the
baby universe).

We have compared the process of thermal activation of seeds to an alter-
native process recently suggested by Gomberoff ef al. (2003), by which most
of space would suddenly jump to the new vacuum phase, leaving only a pair
of critical bubbles as remnants of the old phase. These could subsequently col-
lapse into black holes, with the net result that the vacuum “dark” energy, is
transformed into cold “dark matter” in the form of black holes. We find that
for downward jumps, this process is subdominant with respect to the thermal
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activation of seeds of the new vacuum. For upward jumps, the bounce actions are
comparable, and in fact the creation of remnants may be slightly favored with
respect to the creation of seeds (although when we are going up in energy we
are not transforming dark energy into dark matter, but simply increasing both of
them!).

Also, we have compared the rate of nucleation of critical bubbles by thermal
activation with the rate of bubble nucleation by quantum tunneling, described
by the Coleman-De Luccia (CDL) instanton. The CDL instanton always has
a lower bounce action than the process of thermal activation of seeds or rem-
nants. Thus, even if thermal activation is possible, it appears that jumps between
neighboring vacua will be more frequent through quantum tunneling. For the
case of upward jumps, however, the corresponding actions are comparable (see
Fig. 6). Since the action for thermal activation is higher than that for tunnel-
ing, one should ask whether there are any situations where the former process
may nevertheless be relevant. Note that if the bubble wall carries some internal
degrees of freedom, their entropy will be accounted for in the prefactor which
accompanies the leading expression e~ P for the nucleation rate. It is clear from
Eq. (46) that the temperature the bubble wall can be very high if the wall ten-
sion and the vacuum energies in the two phases are suitably adjusted. Hence the
entropy of the internal degrees of freedom can be very high, making up perhaps
for the difference in actions. Investigation of this possibility is left for further
research.’
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7In Garriga and Megevand (2003, in press), we speculated that thermal activation may be relevant
for the process of multiple brane nucleation. As noted in Feng ez al. (2001), coincident branes carry
a number of degreees of freedom which grows nonlinearly with the number of branes. Because of
that, the entropy factors due to the fields living on the branes may greatly enhance the nucleation
rates, and it may be more probable to nucleate a bubble bounded by a whole stack of branes, than a
bubble bounded by a single brane. Note, however, that in four dimensions (and after the dilaton is
stabilized) the interactions amongst 2-branes are repulsive. Because of that, the CDL instanton for
multiple brane nucleation may not exist, since the stack of branes does not hold together. On the other
hand, at sufficiently high temperature, the branes may attract each other because of thermal symmetry
restoration. Hence, it is conceivable that the CDL instanton may not exist while the thermal instanton
does (Garriga and Megevand, 2003, in press). This possibility seems rather exotic, but it may well be
realized in certain regions of parameter space.
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